Annotated Control Flow Graph for Metamorphic Malware Detection
نویسندگان
چکیده
Metamorphism is a technique that mutates the binary code using different obfuscations and never keeps the same sequence of opcodes in the memory. This stealth technique provides the capability to a malware for evading detection by simple signature-based (such as instruction sequences, byte sequences and string signatures) anti-malware programs. In this paper, we present a new scheme named Annotated Control Flow Graph (ACFG) to efficiently detect such kinds of malware. ACFG is built by annotating CFG of a binary program and is used for graph and pattern matching to analyse and detect metamorphic malware. We also optimize the runtime of malware detection through parallelization and ACFG reduction, maintaining the same accuracy (without ACFG reduction) for malware detection. ACFG proposed in this paper: (i) captures the control flow semantics of a program; (ii) provides a faster matching of ACFGs and can handle malware with smaller CFGs, compared with other such techniques, without compromising the accuracy; (iii) contains more information and hence provides more accuracy than a CFG. Experimental evaluation of the proposed scheme using an existing dataset yields malware detection rate of 98.9% and false positive rate of 4.5%.
منابع مشابه
A framework for metamorphic malware analysis and real-time detection
Metamorphism is a technique that mutates the binary code using different obfuscations. It is difficult to write a new metamorphic malware and in general malware writers reuse old malware. To hide detection the malware writers change the obfuscations (syntax) more than the behavior (semantic) of such a new malware. On this assumption and motivation, this paper presents a new framework named MARD...
متن کاملA Graph Mining Approach for Detecting Metamorphic Malwares
Metamorphic malware changes the syntax of its code in each infection. This process makes it extremely hard to detect. While the byte sequence of the metamorphic malware may be quite different from its parent, the main functionality of the malware has to stay the same. Therefore, traditional methods based on static signature detection cannot detect such malwares, and need to be designed semantic...
متن کاملMetamorphic Malware Detection using Control Flow Graph Mining
Metamorphic malware propagation has persuaded the security society to consider about new approaches to confront this generation of malware with novel solutions. Control Flow Graph, CFG, has been successful in detection of simple malwares. By now, it needs to improve the CFG based detection methods to detect metamorphic malwares efficiently. Our Approach has improved the simple CFG with benefici...
متن کاملDetecting Self-mutating Malware Using Control-Flow Graph Matching
Next generation malware will by be characterized by the intense use of polymorphic and metamorphic techniques aimed at circumventing the current malware detectors, based on pattern matching. In order to deal with this new kind of threat, novel techniques have to be devised for the realization of malware detectors. Recent papers started to address such an issue and this paper represents a furthe...
متن کاملMetamorphic Malware Detection Using Function Call Graph Analysis
Previous work has shown that well-designed metamorphicmalware can evade many commonly-used malware detection techniques, including signature scanning. In this paper, we consider a previously developed score which is based on function call graph analysis. We test this score on challenging classes of metamorphic malware and we show that the resulting detection rates yield an improvement over othe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. J.
دوره 58 شماره
صفحات -
تاریخ انتشار 2015